СОДЕРЖАНИЕ
Стр.
ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. ОПИСАНИЕ КОНСТРУКЦИИ МОТОГОНДОЛЫ . . . . . . . . . . . . . . .
2. СИЛОВОЙ РАСЧЕТ ВОЗДУХОЗАБОРНИКА . . . . . . . . . . . . . . . . . .
2.1.
Исходные данные для силового расчета . . . . . . . . . . . .
2.2
Распределение расчетных аэродинамических нагрузок по длине воздухозаборника . . . . . . . . . . . . . . . . . . . . .
2.3.
Распределение нагрузок по длине и по сечениям воздухозаборника . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.
Распределение аэродинамических нагрузок по внутренней поверхности воздухозаборника . . . . . . . . . .
2.5.
Определение равнодействующей по сечениям воздухозаборника от внешних и внутренних аэродинамических нагрузок . . . . . . . . . . . . . . . . . . . . .
2.6.
Нагрузки на болты крепления воздухозаборника к проставке . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.
Проверка прочности воздухозаборника самолета . . . . . .
2.8.
Автоматизация расчета аэродинамических нагрузок воздухозаборника . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ИЗГОТОВЛЕНИЯ ВОЗДУХОЗАБОРНИКА КАНАЛА СОТОВОЙ ЗВУКОПОГЛОЩАЮЩЕЙ КОНСТРУКЦИИ . . . . . . . . . . . . . . . . . . . .
3.1. Технологичность конструкции воздухозаборника . . . . . . . . . . . . . . .
3.2. Применяемые материалы и оборудование . . . . . . . . . . . . . . . . . . . .
3.3. Технологический процесс сборки обшивок и элементов каркаса
3.4. Использование в конструкции воздухозаборника композиционных материалов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1
Методы получения ПКМ . . . . . . . . . . . . . . . . . . . . . . .
4. ОХРАНА ТРУДА И ОКРУЖАЮЩЕЙ СРЕДЫ . . . . . . . . . . . . . . . . .
5. ЭКОНОМИКА И ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА . . . . . . . . . . . .
ЛИТЕРАТУРА
ПРИЛОЖЕНИЕ
ВВЕДЕНИЕ
На летательном аппарате с воздушно-реактивными двигателями применяются различные входные устройства.
Они служат для торможения потока воздуха перед поступлением его в двигатель, а основными требованиями, предъявляемыми к входным устройствам, являются:
обеспечение высоких значений коэффициента сохранения полного давления;
создание равномерного потока на входе в двигатель или желаемой (допустимой) неравномерности;
минимальное аэродинамическое сопротивление;
обеспечение устойчивой и эффективной работы во всем требуемом диапазоне режимов полета и режимов работы двигателя.
Выбор входного устройства во многом зависит от расчетного числа М полета летательного аппарата, потребного диапазона отклонения чисел М от расчетного, места расположения силовой установки на летательном аппарате, типа применяемых двигателей и ряда других факторов.
На самолете Ту-334 двигатели размещены на хвостовой части фюзеляжа (рис. 1), что позволяет:
а) обеспечить аэродинамически "чистое" крыло с максимально возможным использованием его размаха для размещения средств механизации (закрылков, предкрылков и т.п.) с целью получения высокого аэродинамического качества крыла и высоких значений Сy при взлете и при посадке;
б) создать необходимые условия для работы воздухозаборников, если достаточно далеко отодвинуть их от фюзеляжа, чтобы обеспечить слив пограничного слоя. Изменение угла подхода воздушного потока к воздухозаборнику двигателя, расположенного на хвостовой части фюзеляжа, примерно вдвое меньше изменения углов атаки крыла (или изменения угла тангажа самолета), в то время как у заборников, поставленных под крылом или у передней кромки крыла, это изменение угла подхода воздушного потока больше, чем изменение угла атаки крыла;
в) улучшить характеристики продольной путевой и поперечной устойчивости за счет:
Положение мотоустановок на самолете
Рис