Новости |  Анекдоты |  Сотовые телефоны |  Работа |  Скачать программы |  Рефераты |  Маркет |  Флэш игры 
ПОИСК:  

 
 Сочинения
 Рефераты
 Краткие изложения


скачать Нобелевские лауреаты в области физики
Рефераты: физика

4344  -  Нобелевские лауреаты в области физики
Раздел: Рефераты: физика
Нобелевские лауреаты в области физики - реферат
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 2
1. НОБЕЛЕВСКИЕ ЛАУРЕАТЫ 4
Альфред Нобель 4
Жорес Алферов 5
Н. Бор. 8
Генрих Рудольф Герц 16
Петр Капица 18
Мария Кюри 28
Лев Ландау 32
Вильгельм Конрад Рентген 38
Альберт Энштейн 41
ЗАКЛЮЧЕНИЕ 50
СПИСОК ЛИТЕРАТУРЫ 51
В науке нет откровения, нет постоянных догматов;
всё в ней, напротив того, движется и совершенствуется.
А. И. Герцен
ВВЕДЕНИЕ
В наше время знание основ физики необходимо каждому., чтобы иметь правильное представление об окружающем мире от свойств элементарных частиц до эволюции Вселенной. Тем же, кто решил связать свою будущую профессию с физикой, изучение этой науки поможет сделать первые шаги на пути к овладению профессией. Мы можем узнать, как даже абстрактные на первый взгляд физические исследования рождали новые области техники, давали толчок развитию промышленности и привели к тому, что принято называть НТР. Успехи ядерной физики, теории твердого тела, электродинамики, статистической физики, квантовой механики определили облик техники конца ХХ века, такие ее направления, как лазерная техника, ядерная энергетика, электроника. Разве можно представить себе в наше время какие-нибудь области науки и техники без электронных вычислительных машинМногим из нас после окончания школы доведется работать в одной из этих областей, и кем бы мы ни стали квалифицированными рабочими, лаборантами, техниками, инженерами, врачами, космонавтами, биологами, археологами, - знание физики поможет нам лучше овладеть своей профессией.
Физические явления исследуются двумя способами: теоретически и эксперимен-тально. В первом случае (теоретическая физика) выводят новые соотношения, пользуясь математическим аппаратом и основываясь на известных ранее законах физики. Здесь главные инструменты бумага и карандаш. Во втором случае (экспериментальная физика) получают новые связи между явлениями с помощью физических измерений. Здесь инструменты гораздо разнообразнее многочисленные измерительные приборы, ускорители, пузырьковые камеры и т.п.
Естественно, что эти два подхода требуют различного склада ума и разных способностей, которые редко совмещаются в одном человеке. Кроме того, можно заниматься физикой как наукой или физикой, которая подготавливает почву для практических применений. Так, электромагнитные волны сначала были обнаружены английским ученым Дж. Максвеллом теоретически, как следствие полученных им уравнений электродинамики. Затем они были открыты на опыте немецким физиком Г. Герцем. После этого русский ученый А. Попов и итальянский инженер Г. Маркони показали возможность использования этого физического явления в практических целях, выступив как представители прикладной физики. Эти работы были продолжены многими другими теоретиками и экспериментаторами. Ими были развиты физические принципы современных передатчиков и приемников. И наконец, реальное завершение радиосвязь получила, перейдя из области прикладной физики в область техники.
Какую из многочисленных областей физики предпочестьВсе они тесно связаны между собой. Нельзя быть хорошим экспериментатором или теоретиком в области, скажем, физики высоких энергий, не зная физики низких температур или физики твердого тела. Новые методы и соотношения, появившиеся в одной области, часто дают толчок в понимании другого, на первый взгляд далекого раздела физики. Так, теоретические методы, развитые в квантовой теории поля, произвели революцию в теории фазовых переходов, и наоборот, например, явление спонтанного нарушения симметрии, хорошо известное в классической физике, было заново открыто в теории элементарных частиц и совершенно изменен даже сам подход к этой теории. И разумеется, прежде чем окончательно выбрать какое-либо направление, нужно достаточно хорошо изучить все области физики. Кроме того, время от времени по разным причинам приходится переходить из одной области в другую. Особенно это относится к физикам теоретикам, которые не связаны в своей работе с громоздкой аппаратурой.
Большинству физиков-теоретиков приходится работать в различных областях науки : атомная физика, космические лучи, теория металлов, атомное ядро, квантовая теория поля, астрофизика все разделы физики интересны. Сейчас наиболее принципиальные проблемы решаются в теории элементарных частиц и в квантовой теории поля. Но и в других областях физики есть много интересных нерешенных задач. И конечно, их очень много в прикладной физике. Поэтому необходимо не только поближе познакомиться с различными разделами физики, но, главное, почувствовать их взаимосвязь.
Я не случайно выбрала тему Нобелевские лауреаты, ведь, чтобы познавать новые области физики, чтобы понимать суть современных открытий, необходимо хорошо усвоить уже устоявшиеся истины. Мне было очень интересно в процессе моей работы над рефератом узнавать что-то новое не только о великих открытиях, но и о самих ученых, об их жизни, рабочем пути, судьбе. На самом деле это так интересно и увлекательно узнавать, как же произошли открытия. И я еще раз убедилась, что многие открытия происходят совершенно случайно, под час даже в процессе совсем иной работы. Но, не смотря на это, открытия не становятся менее интересными. Мне кажется, я вполне достигла своей цели приоткрыть для себя некоторые тайны из области физики. И, как я думаю, изучение открытий через жизненный путь великих ученых, лауреатов Нобелевской премии, является оптимальным вариантом. Ведь всегда лучше усваиваешь материал, когда знаешь, какие цели перед собой ставил ученый, чего он хотел и чего же он, наконец, добился.
1. НОБЕЛЕВСКИЕ ЛАУРЕАТЫ
Альфред Нобель
АЛЬФРЕД НОБЕЛЬ, шведский химик-экспериментатор и бизнесмен, изобретатель динамита и других взрывчатых веществ, пожелавший основать благотворительный фонд для награждения премией своего имени, принесшего ему посмертную известность, отличался невероятной противоречивостью и парадоксальностью поведения. Современники считали, что он не соответствовал образу преуспевающего капиталиста эпохи бурного промышленного развития второй половины ХIХв. Нобель тяготел к уединению, покою, не мог терпеть городской суматохи, хотя большую часть жизни ему довелось прожить именно в городских условиях, да и путешествовал он тоже довольно часто. В отличие от многих современных ему воротил делового мира Нобеля можно назвать скорее спартанцем, так как он никогда не курил, не употреблял спиртного, избегал карт и других азартных игр.
На своей вилле в Сан-Ремо, возвышающейся над Средиземным морем, утопающей в апельсиновых деревьях, Нобель построил маленькую химическую лабораторию, где работал, как только позволяло время. Среди прочего он экспериментировал в области получения синтетического каучука и искусственного шелка. Нобель любил Сан-Ремо за его удивительный климат, но хранил также и теплые воспоминания о земле предков. В 1894г. он приобрел железоделательный завод в Вермланде, где одновременно выстроил поместье и обзавелся новой лабораторией. Два его последних летних сезона своей жизни он
провел в Вермланде. Летом 1896г. скончался его брат Роберт. В это же время Нобеля начали мучить боли в сердце.
На консультации у специалистов в Париже он был предупрежден о развитии грудной жабы, связанной с недостаточным снабжением сердечной мышцы кислородом. Ему было рекомендовано отправится на отдых. Нобель вновь переехал в Сан-Ремо. Он постарался завершить неоконченные дела и оставил собственноручную запись предсмертного пожелания. После полуночи 10 декабря 1896г. от кровоизлияния в мозг он скончался. Кроме слуг-итальянцев, которые не понимали его, с Нобелем не оказалось никого из близких в момент ухода из жизни, и его последние слова остались неизвестными.
Истоки завещания Нобеля с формулировкой положения о присуждении наград за достижения в различных областях человеческой деятельности оставляют много неясностей. Документ в окончательном виде представляет собой одну из редакций прежних его завещаний. Его предсмертный дар для присуждения премий в области литературы и области науки и техники логически вытекает из интересов самого Нобеля, соприкасавшегося с указанными сторонами человеческой деятельности : физикой, физиологией, химией, литературой. Имеются также основания предположить, что установление премий за миротворческую деятельность связано с желанием изобретателя отмечать людей, которые, подобно ему, стойко противостояли насилию. В 1886 году он, например, сказал своему английскому знакомому, что имеет все более и более серьезное намерение увидеть мирные побеги красной розы в этом раскалывающемся мире.
Итак, изобретение динамита принесло Нобелю огромное состояние. 27 ноября 1895 года за год до смерти Нобель завещал свое состояние в 31 миллион долларов для поощрения научных исследований во всем мире и для поддержания наиболее талантливых ученых. Согласно завещанию Нобеля, шведская академия наук каждый год осенью называет имена лауреатов после внимательного рассмотрения предложенных крупными учеными и национальными академиями кандидатур и тщательной проверки их работ. Вручение премий происходит 10 декабря в день смерти Нобеля.
Жорес Алферов
Я не уверен даже, что в ХХI веке удастся освоить
термояд или, скажем, победить рак
Борис Стругацкий,
писатель
ЖОРЕС АЛФЕРОВ родился 15 марта 1930 года в Витебске. В 1952 году с отличием окончил Ленинградский электротехнический институт имени В. И. Ульянова (Ленина) по специальности электровакуумная техника.
В Физико-техническом институте имени А. Ф. Иоффе АН СССР работал инженером, младшим, старшим научным сотрудником, заведующим сектором, заведующим отделом. В 1961 году защитил кандидатскую диссертацию по исследованию мощных германиевых и кремниевых выпрямителей В 1970 году защитил по результатам исследований гетеропереходов в полупроводниках диссертацию на соискание ученой степени доктора физико-математических наук. В 1972 году был избран членом-корреспондентом, в 1979-м действительным членом Академии наук СССР. С 1987 года директор Физико-технического института АН СССР. Главный редактор журнала Физика и техника полупроводников.
Ж. Алферов автор фундаментальных работ в области физики полупроводников, полупроводниковых приборов, полупроводниковой и квантовой электроники. При его активном участии были созданы первые отечественные транзисторы и мощные германиевые выпрямители. Основоположник нового направления в физике полупроводников полупроводниковой электронике полупроводниковые гетероструктуры и приборы на их основе. На счету ученого 50 изобретений, три монографии, более 350 научных статей в отечественных и международных журналах. Он лауреат Ленинской (1972) и Государственной (1984) премий СССР.
Франклиновский институт (США) присудил Ж. Алферову золотую медаль С. Баллантайна, Европейское физическое общество удостоило его премии Хьюлетт-Паккард. Физику присуждены также премия имени А. П. Карпинского, золотая медаль Х. Велькера (ФРГ) и Международная премия Симпозиума по арсениду галлия.
С 1989 года Алферов председатель президиума Ленинградского Санкт-Петербургского научного центра РАН. С 1990 года вице-президент Академии наук СССР (РАН). Ж. Алферов депутат Государственной Думы Российской Федерации (фракция КПРФ), член комитета по образованию и науке.
Наконец-то достижения российской науки по достоинству оценены за рубежом. Лауреатом Нобелевской премии по физике за 2000 год стал наш соотечественник, директор Физико-технического института им. А. Ф. Иоффе, вице-президент РАН, академик и депутат Госдумы Жорес Алферов! Отечественные ученые не добивались такого успеха более чем два десятилетия. Последним был Петр Капица в 1978 году.
Ж. Алферов разделил премию с двумя зарубежными коллегами Гербертом Кремером из Калифорнийского университета в Санта-Барбарее и Джеком С.Килби из фирмы Texas Instruments в Далласе. Ученые удостоены награды за открытие и разработку опто- и микроэлектронных элементов, на основе которых впоследствии разрабатывались детали современных электронных устройств. Эти элементы были созданы на базе так называемых полупроводниковых гетероструктур многослойных компонентов быстродействующих диодов и транзисторов.
Один из соратников Ж. Алферова, американец немецкого происхождения Г. Кремер, в далеком 1957 году разработал гетероструктурный транзистор. Шестью годами позже он и Ж. Алферов независимо друг от друга предложили принципы, которые были положены в основу конструкции гетероструктурного лазера. В том же году Жорес Иванович запатентовал свой знаменитый оптический инжекционный квантовый генератор. Третий физик-лауреат Джек С.килби внес огромный вклад в создание интегральных схем.
Фундаментальные работы этих ученых сделали принципиально возможным создание волоконно-оптических коммуникаций, в том числе Интернета. Лазерные диоды, основанные на гетероструктурной технологии, можно обнаружить в проигрывателях CD-дисков, устройстве для прочтения штрих-кодов. Быстродействующие транзисторы используются в спутниковой связи и мобильных телефонах.
Размер премии составляет 9млн. шведских крон (около девятисот тысяч долларов). Половину этой суммы получил Джек С.Килби, другую поделили Жорес Алферов и Герберт Кремер.
Каковы же прогнозы нобелевского лауреата на будущееОн убежден, что ХХI век будет веком атомной энергетики. Углеводородные источники энергии исчерпаемы, атомная же энергия пределов не знает. Безопасная атомная энергитика, как говорит Алферов, возможна.
Квантовая физика, физика твердого тела вот, по его мнению, основа прогресса.. Ученые научились укладывать атомы один к одному, в буквальном смысле строить новые материалы для уникальных приборов. Уже появились потрясающие лазеры на квантовых точках.
Чем полезно и опасно нобелевское открытие АлфероваИсследования нашего ученого и его коллег-лауреатов из Германии и США являются крупным шагом на пути освоения нанотехнологии. Именно ей, по убеждению мировых авторитетов, будет принадлежать ХХI век. В нанотехнологию ежегодно инвестируются сотни миллионов долларов, исследованиями заняты десятки фирм.
Нанороботы
гипотетические механизмы размером в десятки нанометров (это миллионные доли миллиметра), разработка которых начата не так давно. Наноробот собирается не из привычных нам деталей и узлов, а из отдельных молекул и атомов. Как и обычные роботы, нанороботы смогут двигаться, производить различные операции, они будут управляться извне или встроенным компьютером.
Основные задачи нанороботов собирать механизмы и создавать новые вещества. Такие устройства называются ассемблер (сборщик) или репликатор. Венцом станут нанороботы, самостоятельно собирающие свои копии, то есть способные к размножению. Сырьем для размножения послужат самые дешевые, буквально валяющиеся под ногами материалы опавшие листья или морская вода, из которых нанороботы будут выбирать нужные им молекулы, как лисица отыскивает себе пропитание в лесу.
Идея этого направления принадлежит нобелевскому лауреату Ричарду Фейнману и была высказана в 1959 году. Уже появились приборы, способные оперировать с отдельным атомом, например, переставить его в другое место. Созданы отдельные элементы нанороботов : механизм шарнирного типа на основе нескольких цепочек ДНК, способный сгибаться и разгибаться по химическому сигналу, образцы нанотранзисторов и электронных переключателей, состоящие из считанного числа атомов.
Нанороботы, введенные в организм человека, смогут очистить его от микробов или зарождающихся раковых клеток, кровеносную систему от отложений холестерина. Они смогут исправить характеристики тканей и клеток. Так же как молекулы ДНК при росте и размножении организмов складывают свои копии из простых молекул, нанороботы смогут создавать различные объекты и новые виды материи как мертвой, так и живой. Трудно представить все возможности, которые откроются перед человечеством, если оно научится оперировать с атомами, как с винтами и гайками. Изготовление вечных деталей механизмов из атомов углерода, выстроенных в алмазную решетку, создание молекул, редко встречаю-щихся в природе, новых, сконструированных соединений, новых лекарств
Но что если в устройстве, предназначенном для очистки промышленных отходов, произойдет сбой и оно начнет уничтожать полезные вещества биосферыСамым неприятным окажется то, что нанороботы способны к самовоспроизводству. И тогда они окажутся принципиально новым оружием массового поражения. Нетрудно представить себе нанороботы, запрограммированные на изготовление уже известного оружия. Овладев секретом создания робота или каким-то образом достав его, даже террорист-одиночка сможет штамповать их в неимоверном количестве. К неприятным последствиям нанотехнологии относится создание устройств, селективно разрушительных, например, воздействующих на определенные этнические группы или географические районы.
Некоторые считают Алферова мечтателем. Что ж, он любит мечтать, но его мечты строго научны. Потому что Жорес Алферов настоящий ученый. И нобелевский лауреат.
В 2000 году лауреатами Нобелевской премии по химии стали американцы Алан Хигер (Калифорнийский университет в Санта Барбаре) и Алан Макдайармид (Пенсильванский университет), а также японский ученый Хидэки Сиракава (Университет Цукубы). Они удостоились высшей научной награды за открытие электропроводимости пластмасс и разработку электропроводящих полимеров, получивших широкое применение в производстве фотопленки, компьютерных мониторов, телеэкранов, отражающих свет окон и прочих высокотехнологичных продуктов.
Н. Бор.
Из всех теоретических троп, тропа Бора была самой значительной. П. Капица
НИЛЬС БОР (18851962) крупнейший физик современности, создатель первоначальной квантовой теории атома, личность поистине своеобразная и неотразимая. Он не только стремился познать законы природы, расширяя пределы человеческого познания, не только чувствовал пути развития физики, но и старался всеми доступными ему средствами заставить науку служить миру и прогрессу. Личные качества этого человека глубокий ум, величайшая скромность, честность, справедливость, доброта, дар предвидения, исключительное упорство в поисках истины и ее отстаивании не менее притягательны, чем его научная и общественная деятельность.
Эти качества сделали его лучшим учеником и соратником Резерфорда, уважаемым и незаменимым оппонентом Эйнштейна, противником Черчилля и смертельным врагом немецкого фашизма. Благодаря этим качествам, он стал учителем и наставником большого числа выдающихся физиков.
Бор пережил две войны и грандиозную революцию в физике; он был вовлечен в целый ряд самых неожиданных ситуаций. К нему поступали секретные послания, ему удалось ускользнуть от нацистов в люке военного бомбардировщика, он занимался подпольной деятельностью, стремясь спасти видных ученых от преследования фашистов, ряд лет жил под вымышленным именем. Немногие детективы могут сравниться с приключениями этого скромного профессора.
Яркая биография, история гениальных открытий, полная драматизма борьба против нацизма, борьба за мир и мирное использование атомной энергии все это привлекало и будет привлекать внимание к великому ученому и прекраснейшему человеку.
Н. Бор родился 7 октября 1885 г. Он был вторым ребенком в семье профессора физиологии Копенгагенского университета Христиана Бора.
Семи лет Нильс пошел в школу. Учился он легко, был любознательным, трудолюбивым и вдумчивым учеником, талантливым в области физики и математики. Не ладилось только у него с сочинениями по родному языку: они были у него слишком короткими.
Бор с детства любил что-нибудь конструировать, собирать и разбирать. Его всегда интересовала работа больших башенных часов; он готов был подолгу наблюдать за работой их колес и шестерен. Дома Нильс чинил все, что нуждалось в ремонте. Но прежде чем разобрать что-либо, тщательно изучал функции всех частей.
В 1903 г. Нильс поступил в Копенгагенский университет, годом позже туда поступил и его брат Харальд. Вскоре за братьями укрепилась репутация очень способных студентов.
В 1905 г. Датская академия наук объявила конкурс на тему: Использование вибрации струи для определения поверхностного натяжения жидкостей. Работа, рассчитанная на полтора года, была очень сложной и требовала хорошего лабораторного оборудования. Нильс принял участие в конкурсе. В результате напряженной работы была одержана первая победа: он стал обладателем золотой медали. В 1907 г. Бор закончил университет, а в 1909 г. его работа Определение поверхностного натяжения воды методом колебания струи была напечатана в трудах Лондонского Королевского общества.
В этот период Н. Бор начал готовиться к сдаче магистерского экзамена. Свою магистерскую диссертацию он решил посвятить физическим свойствам металлов. На основе электронной теории он анализирует электро- и теплопроводность металлов, их магнитные и термоэлектрические свойства. В середине лета 1909 г. магистерская диссертация в 50 страниц рукописного текста готова. Но Бор не очень ею доволен: в электронной теории он обнаружил слабые места. Однако защита прошла успешно, и Бор получил степень магистра.
После короткого отдыха
Бор вновь берется за работу, решив написать докторскую диссертацию по анализу электронной теории металлов. В мае 1911 г. он успешно ее защищает и в этом же году едет на годичную стажировку в Кембридж к Дж. Томсону. Так как в электронной теории у Бора возник ряд неясных вопросов, то он решил свою диссертацию перевести на английский язык, чтобы Томсон мог ее прочитать. Меня очень волнует мнение Томсона о работе в целом, а также его отношение к моей критике, писал Бор.
Знаменитый английский физик любезно принял молодого стажера из Дании. Он предложил Бору заняться положительными лучами, и тот принялся за сборку экспериментальной установки. Установка вскоре была собрана, но дело дальше не пошло. И Нильс решает оставить данную работу и заняться подготовкой к изданию своей докторской диссертации.
Однако Томсон не спешил прочитать диссертацию Бора. Не только потому, что вообще не любил читать и был страшно занят. Но и потому, что, будучи ревностным приверженцем классической физики, почувствовал в молодом Боре инакомыслящего. Докторская диссертация Бора так и осталась ненапечатанной.
Трудно сказать, чем бы все это кончилось для Бора и какой оказалась бы его дальнейшая судьба, не будь рядом молодого, но уже ставшего лауреатом Нобелевской премии профессора Эрнеста Резерфорда, которого Бор увидел впервые в октябре 1911 г. на ежегодном Кавендишском обеде. Хотя в этот раз мне не удалось познакомиться с Резерфордом, на меня произвели глубокое впечатление его обаяние и энергия качества, с помощью которых ему удавалось достичь почти невероятных вещей, где бы он ни работал, вспоминал Бор. Он принимает решение работать вместе с этим удивительным человеком, обладающим почти сверхъестественной способностью безошибочно проникать в суть научных проблем. В ноябре 1911 г. Бор побывал в Манчестере, встретился с Резерфордом, побеседовал с ним. Резерфорд согласился принять Бора в свою лабораторию, но вопрос необходимо было отрегулировать с Томсоном. Томсон без колебаний дал свое согласие. Он не мог понять физических воззрений Бора, но, видимо, и не хотел ему мешать. Это было, несомненно, мудро и дальновидно ,со стороны знаменитого классика.
В апреле 1912 г. Н. Бор приехал в Манчестер, в лабораторию Резерфорда. Свою главную задачу он видел в разрешении противоречий планетарной модели атома Резерфорда. Своими мыслями он охотно делился с учителем, который советовал ему более осторожно производить теоретическое построение на таком фундаменте, каким он считал свою атомную модель. Близилось время отъезда, а Бор работал все с большим энтузиазмом. Он понял, что разрешить противоречия атомной модели Резерфорда в рамках чисто классической физики не удастся. И он решил применить к планетарной модели атома квантовые представления Планка и Эйнштейна. Первая часть работы вместе с письмом, в котором Бор спрашивал Резерфорда, как ему удалось одновременно использовать классическую механику и квантовую теорию излучения, была отправлена в Манчестер 6 марта с просьбой ее опубликования в журнале. Суть теории Бора была выражена в трех постулатах:
1. Существуют некоторые стационарные состояния атома, находясь в которых он не излучает и не поглощает энергии. Этим стационарным состояниям соответствуют вполне определенные (стационарные) орбиты.
2. Орбита является стационарной, если момент количества движения электрона (L=m v r) кратен Ь/2= h. т. е. L=m v r = n h, где n=1. 2, 3, ... целые числа.
3. При переходе атома из одного стационарного состояния в другое испускается или поглощается один квант энергии hvnm==WnWm, где Wn, Wm энергия атома в двух стационарных состояниях, h постоянная Планка, vnm частота излучения.При Wп>Wт происходит излучение кванта, при WnВ своем ответном письме Бору по поводу полученной работы Резерфорд писал: Ваши мысли относительно причин возникновения спектра водорода очень остроумны и представляются хорошо продуманными, однако сочетание идей Планка со старой механикой создает значительные трудности для понимания того, что же все-таки является основой такого рассмотрения. Я обнаружил серьезное затруднение в связи с Вашей гипотезой, в котором Вы без сомнения, полностью отдаете себе отчет; оно состоит в следующем: как может знать электрон, с какой частотой он должен колебаться, когда он переходит с одного стационарного состояния в другое. Мне кажется, что Вы вынуждены предположить, что электрон знает заблаговременно, где он собирается остановиться.
Статья имела большой объем, и Резерфорд просил ее сократить, И Бор поехал в Манчестер, чтобы на месте решить этот вопрос. Статья была напечатана в мае 1913 г., а Резерфорд долго потом вспоминал эту забавную баталию, как деликатный датчанин методически теснил его в угол. Бор же продолжал дальше развивать свои идеи: в июне 1913 г. вышла вторая часть работы, в ноябре третья.
Это был переворот, пусть пока не окончательный, во взглядах физиков на атом. Его дальнейшим углублением явилась квантовая механика. И конечно, теория Бора вызвала яростные дискуссии. Первая публичная дискуссия по теории Бора с участием многих видных физиков состоялась в сентябре 1913 г. Д. Джине, выступая на заседании, сказал: Доктор Бор пришел к чрезвычайно остроумному, оригинальному и, можно сказать, убедительному толкованию законов спектральных линий... Сегодня единственным важным подтверждением правильности этих предположений является тот факт, что они действуют на практике. Это была огромная поддержка.
Дж. Томсон очень темпераментно оспаривал ряд положений новой теории. Г. А. Лоренц очень внимательно и благожелательно отнесся к новой теории атома. Оценивая происходящее, де Бройль писал: Громадная заслуга Бора состоит в том, что он ясно понял, что нужно сохранить планетарную модель атома, введя в нее фундаментальные идеи квантовой теории.
В связи с тем что в Копенгагенском университете затягивалось открытие вакансии по теоретической физике, а шаткое положение приват-доцента беспокоило Бора, он осенью 1914 г. принимает приглашение Школы математической физики Манчестера и занимает в ней место доцента. Друзья-манчестерцы с большой радостью встретили Боров после их трудного и опасного переезда в Англию: ведь в это время уже ярко полыхал пожар первой мировой войны. Читая лекции по термодинамике, электромагнитной и электронной теории. Бор по-прежнему много работает над теорией атома. Если говорить о теории строения атома, то она получила новый толчок в 1914 г., когда были опубликованы знаменитые опыты Франка и Герца по возбуждению атома электронными соударениями, писал позднее Бор.
Два года проработал Бор в Манчестере, пока не получил в марте 1916 г. приглашение из Копенгагена занять должность профессора по теоретической физике. В сентябре Бор стал профессором Копенгагенского университета, чуть позднее председателем Датского физического общества, в 1917 г.членом Датского Королевского общества (Датская академия наук).
Бор много делает для развития науки в своей родной Дании, он мечтает о международной школе физиков-теоретиков
на базе организуемого им института. Проект института составлялся при самом активном его участии, он вникал во все мелочи, заставляя без конца переделывать то одно, то другое. Торжественное открытие института теоретической физики состоялось 15 сентября 1920 г., и первое приглашение на торжества по этому поводу было направлено Резерфорду, теперь уже директору Кавендишской лаборатории.
Популярность Бора как ученого растет. На его лекции в университете ходят не только студенты, но и профессора других кафедр. У него появляются первые иностранные ученики. В 1919 г. Бор едет в Лейден, где знакомится с Камерлинг-Оннесом и П. Эренфестом (18801933). В Копенгаген к Бору приезжает А. Зоммерфельд (18681951). В 1920 г. ученый с радостью принимает приглашение М. Планка прочитать в Берлине лекцию по теории спектров: ведь он еще не знаком ни с Планком, уже секретарем Прусской академии наук, ни с Эйнштейном создателем специальной и общей теории относительности, директором Физического института. В Берлине в 1920 г. состоялась встреча этих великих физиков, именно здесь начался принципиальный спор между Бором и Эйнштейном о дальнейших путях развития физики.
Отвечая на общий вывод Эйнштейна о том, что всякий процесс излучения должен иметь определенное направление, Бор заметил, что излишняя точность вовсе не следует из принципов детерминизма. С этим Эйнштейн не согласился, считая, что любое явление вполне может быть предсказано и рассчитано, если известны соответствующие законы (как это всегда было в классической физике). Но, как оказалось, явления микромира невозможно втиснуть в классические рамки, и спор двух великих корифеев по этим проблемам продолжался более тридцати лет.
В 1922 г. Нильс Бор за заслуги в исследовании атома и атомного излучения стал Нобелевским лауреатом. Праздник Бора превратился в национальное торжество всей Дании. Поздравления шли со всех сторон. Одним из первых и наиболее дорогим было поздравление от Э. Резерфорда. Бор писал своему учителю: Простите, что я не поблагодарил Вас за телеграмму, но, поверьте, все эти дни я много думал о Вас. Я знаю, скольким обязан Вами не только за Ваше участие в моей работе, не только за вдохновение, которое Вы вселяли в меня, но и за постоянную дружбу в течение этих двенадцати лет, с тех пор, как я имел ни с чем не сравнимое счастье встретиться с Вами впервые в Манчестере.
Исключительно напряженная работа сотрудников Института теоретической физики, связанная с решением ими труднейших проблем атомной теории, требовала от Бора, как административного и научного руководителя, не только постоянного внимания и научной осведомленности, но и большого таланта. Бор сумел создать в институте свой копенгагенский стиль работы, свободный от общепринятых условностей, стиль уважения, дружбы, полной свободы слова и мысли, доброжелательства, остроумия и оптимизма. Есть вещи настолько сложные, что о них можно говорить лишь шутя, писал он в связи с этим. Бор не любил, да и не умел работать в одиночестве, считая, что развитие науки невозможно без широкого сотрудничества. В большом окружении молодых ученых Бор чувствовал себя как рыба в воде. В умении подбирать людей, сплачивать их в работоспособный коллектив, руководить им и трудиться вместе со всеми рука об руку была сила Бора И этим он был подобен своему учителю Э. Резерфорду, на которого всегда стремился походить.
В 1930 г. к Бору приехал молодой советский физик Лев Ландау. Он очень быстро стал своим в дружной интернациональной семье питомцев Бора.
По словам П. Л. Капицы, Бор сразу же разглядел в Ландау не только талантливого ученого, но, несмотря на некоторую резкость и экстравагантность его поведения, и человека больших душевных качеств. Ландау считал Бора своим единственным учителем в теоретической физике. Я думаю, что у Бора Ландау научился и тому, как следует учить и воспитывать молодежь. Пример Бора, несомненно, способствовал успеху крупной школы теоретической физики, которую впоследствии создал Ландау в Советском Союзе.
В 1934 г. Бор приехал первый раз в СССР. Он посетил Москву, Ленинград, Харьков, где познакомился с научно-исследовательскими институтами и выступал с докладами. Вспоминая об этих приятных встречах, Ландау писал: Он думал не только о строении атома, он думал о строении мира, в котором живут его современники... В Германии хозяйничал Гитлер, и уже тогда Бор понимал, к чему это может привести. Он ненавидел фашизм.
Шли 30-е годы XX в.годы бурных открытий в области атомной физики. В 1932 г. заработал первый циклотрон Лоуренса, в 1932 г. Чэдвик открыл нейтрон, а следом за ним Андер-сонпозитрон, первую античастицу, предсказанную теоретически Дираком; в этом же году Д. Д. Иваненко и В. Гейзенберг обосновывают протонно-нейтронную модель ядра, Юри открывает дейтерий, Ирен и Фредерик Жолио-Кюри искусственную радиоактивность и экспериментально подтверждают существование пары электрон позитрон, Паули выдвигает идею нейтрино, а в 1934 г. Ферми разрабатывает теорию р-распада. Бор решает построить при институте циклотрон, чтобы вести экспериментальные исследования в области атома и ядра.
В 1938 г. на Всемирном конгрессе антропологии и этнографии Бор выступает с докладом Философия естествознания и культуры народов, резко направленным против расовой теории нацистов. Немецкая делегация во время доклада покинула зал, а Нильс Бор был внесен в список смертельных врагов третьего рейха. В это время в институте Бора уже работала часть итальянских физиков-эмигрантов, в 1938 г. он принимает у себя Э. Ферми с семьей и помогает им переправиться в США, избавив их тем самым от преследования со стороны фашистов; он так же помогает устроиться в Стокгольме Лизе Мейтнер, попавшей под действие расистских законов после захвата Австрии фашистами.
В январе 1939 г. Бор отправляется в США для работы на три-четыре месяца в Принстоне. И буквально накануне отъезда он узнает от австрийского физика О. Фриша о том, что немецкие физики Ган и Штрассман открыли деление урана под действием нейтронов. Весть была ошеломляющей: ведь это прямой путь к атомной бомбе. 26 января 1939 г. Бор выступил с сообщением о делении ядра в Вашингтонском университете. Ученые поняли, что физика стоит на пороге величайших свершений. Получив в феврале от Фриша и Мейтнер новые сведения, Бор приходит к выводу, что атомным горючим будет уран-235, ибо он делится под воздействием медленных нейтронов, при этом будет выделяться огромное количество энергии. 16 марта 1939 г. Э. Ферми поехал в Нью-Йорк, чтобы доложить правительству США о готовности физиков заняться созданием атомного оружия, обладающего огромной разрушительной силой.
Чтобы сплотить нацию и поднять дух датчан, Бор активно участвует в издании книги Культура Дании на пороге 1940 г.. Выход этой книги был своеобразным сигналом для появления подпольных газет, для возникновения и роста движения Сопротивления.
Как настоящий гуманист. Бор постоянно говорит влиятельным людям о мирном использовании атомной энергии. Так как создание атомного оружия, по мнению Бора, вызовет
гибельную гонку вооружения и русские тоже могут в ближайшее время создать атомную бомбу, то их уже сейчас надо привлечь к совместной разработке атомных проблем. Эти мысли ученого разделял и президент Рузвельт, но они полностью были отвергнуты премьером Англии Черчиллем.
Вернувшись в августе 1945 г. на родину. Бор снова принимает ключи от своего Института теоретической физики и дает согласие на переизбрание его на должность президента Датского Королевского общества (на пост президента Датской академии наук Бор переизбирался еще три раза: в 1949, 1954 и 1959 гг.).
В августе 1955 г. Бор выступает на Женевской конференции Атом для мира с докладом Физика и человечество. И вновь горячо и настойчиво звучит голос великого физика о необходимости мирного использования атомной энергии и установления широкого международного сотрудничества в различных областях человеческой деятельности, в том числе и в науке. И как бы в подтверждение этих слов следует сообщение из Советского Союза о первой в мире атомной электростанции, запушенной 27 июня 1954 г. В октябре 1957 г. Н. Бору первому была присуждена премия Атом для мира. В день своего 70-летия он был награжден высшим королевским орденом орденом Данниборга I степени, и в честь его датское правительство и Датская академия наук учредили золотую медаль с изображением профиля ученого на одной стороне. На другой стороне была изображена модель атома с надписью вокруг нее: Противоположности суть дополнения.
В 1961 г. Н. Бор в последний раз побывал в СССР. Он провел у нас две недели, посетив Институт атомной энергии. Объединенный институт ядерных исследований. Институт физических проблем. Физический институт АН СССР, Московский и Тбилисский университеты. Бор восхищался прекрасной базой для проведения научных исследований в СССР, условиями для получения высшего образования. Он был в восторге от праздника Архимеда студентов МГУ. После окончания шуточной оперы Архимед восторженный Бор поднялся на сцену и сказал взволнованно: Сегодня вечером я многое узнал о физике и в особенности о том материале, из которого делаются физики. Если они способны на такую же изобретательность и остроумие и в физике,они многое совершат.
Бор прочитал несколько лекций, первую из них он читал студентам физического факультета МГУ. И когда преподаватели факультета после окончания беседы попросили Бора сделать на стене памятную надпись, он взял мел и против надписи, оставленной Дираком, написал: Противоположностине противоречия, а дополнения.
В 1963 г. исполнялось 50 лет боровской теории атома. Бор был полон надежд и уже предвкушал радость недалеких встреч со своими друзьями. Но дожить, к сожалению, до этого юбилея ему не пришлось. Бор умер 18 ноября 1963 г.
Физики всего мира потрясены вестью о кончине великого датского ученого и мыслителя, основателя современной теории атома и атомного ядра Нильса Бора. Идеи Бора об основных законах атомной физики оказали на развитие этой науки за последние полвека такое огромное влияние, какое редко выпадает на долю одного человека... В лице Бора люди потеряли гениального ученого и мыслителя, борца за мир и взаимопонимание между народами, друга всего человечества,говорилось в некрологе, подписанном видными советскими учеными.
Генрих Рудольф Герц
ГЕНРИХ РУДОЛЬФ ГЕРЦ (18571894) родился 22 февраля в Гамбурге, в семье адвоката, ставшего позднее сенатором. Учился Герц прекрасно и был непревзойденным по сообразительности учеником. Он любил все предметы, любил писать стихи и работать на токарном станке. К сожалению, всю жизнь Герцу мешало слабое здоровье.
В 1875 г. после окончания гимназии Герц поступает в Дрезденское, а затем в Мюнхенское высшее техническое училище. Дело шло хорошо до тех пор, пока изучались предметы общего характера. Но как только началась специализация, Герц изменил свое решение. Он не желает быть узким специалистом, он рвется к научной работе и поступает в Берлинский университет. Герцу повезло: его непосредственным наставником оказался Гельмгольц. Хотя знаменитый физик был приверженцем теории дальнодействия, но как истинный ученый он безоговорочно признавал, что идеи Фарадея Максвелла о близкодействии и физическом поле дают прекрасное согласие с экспериментом.
Попав в Берлинский университет, Герц с большим желанием стремился к занятиям в физических лабораториях. Но к работе в лабораториях допускались лишь те студенты, которые занимались решением конкурсных задач. Гельмгольц предложил Герцу задачу из области электродинамики: обладает ли электрический ток кинетической энергиейГельмгольц хотел направить силы Герца в область электродинамики, считая ее наиболее запутанной.
Герц принимается за решение поставленной задачи, рассчитанное на 9 месяцев. Он сам изготовляет приборы и отлаживает их. При работе над первой проблемой сразу же выявились заложенные в Герце черты исследователя: упорство, редкое трудолюбие и искусство экспериментатора. Задача была решена за 3 месяца. Результат, как и ожидалось, был отрицательным. (Сейчас нам ясно, что электрический ток, представляющий собой направленное движение электрических зарядов (электронов, ионов), обладает кинетической энергией. Для того чтобы Герц мог обнаружить это, надо было повысить точность его эксперимента в тысячи раз.) Полученный результат совпадал с точкой зрения Гельмгольца, хотя и ошибочной, но в способностях молодого Герца он не ошибся. Я увидел, что имел дело с учеником совершенно необычного дарования, отмечал он позднее. Работа Герца была удостоена премии.
Вернувшись после летних каникул 1879 г., Герц добился разрешения работать над другой темой: <0б индукции во вращающихся телах, взятой в качестве докторской диссертации. Это была теоретическая работа. Он предполагал завершить ее за 23 месяца, защитить и получить поскорее звание доктора, хотя университет еще не был закончен. Работая с большим подъемом и воодушевлением, Герц быстро закончил исследование. Зашита прошла успешно, и ему присудили степень доктора с отличием явление исключительно редкое, тем более для студента.
С 1883 по 1885 г. Герц заведовал кафедрой теоретической физики в провинциальном городке Киле, где совсем не было физической лаборатории. Герц решил заниматься здесь теоретическими вопросами. Он корректирует систему уравнения электродинамики одного из ярких представителей дальнодействия Неймана. В результате этой работы Герц написал свою систему уравнений, из которой легко получались уравнения Максвелла. Герц разочарован, ведь он пытался доказать универсальность электродинамических теорий представителей дальнодействия, а не теории Максвелла. Данный вывод нельзя считать точным доказательством максвелловской системы как единственно возможной, делает он для себя, по существу, успокаивающий вывод.
В 1885 г. Герц принимает приглашение технической школы в Карлсруэ, где будут проведены его знаменитые опыты по распространению электрической силы. Еще в 1879 г. Берлинская академия наук поставила задачу: Показать экспериментально наличие какой-нибудь
связи между электродинамическими силами и диэлектрической поляризацией диэлектриков. Предварительные подсчеты Герца показали, что ожидаемый эффект будет очень мал даже при самых благоприятных условиях. Поэтому, видимо, он и отказался от этой работы осенью 1879 г. Однако он не переставал думать о возможных путях ее решения и пришел к выводу, что для этого нужны высокочастотные электрические колебания.
Герц тщательно изучил все, что было известно к этому времени об электрических колебаниях и в теоретическом, и в экспериментальном планах. Найдя в физическом кабинете технической школы пару индукционных катушек и проводя с ними лекционные демонстрации, Герц обнаружил, что с их помощью можно было получить быстрые электрические колебания с периодом 10-8С. В результате экспериментов Герц создал не только высокочастотный генератор (источник высокочастотных колебаний), но и резонатор приемник этих колебаний.
Генератор Герца состоял из индукционной катушки и присоединенных к ней проводов, образующих разрядный промежуток,
резонатор из провода прямоугольной формы и двух шариков на его концах, образующих также разрядный промежуток. В результате проведенных опытов Герц обнаружил, что если в генераторе будут происходить высокочастотные колебания (в его разрядном промежутке проскакивает искра), то в разрядном промежутке резонатора, удаленном от генератора даже на 3 м, тоже будут проскакивать маленькие искры. Таким образом, искра во второй цепи возникала без всякого непосредственного контакта с первой цепью. Каков же механизм ее передачиИли это электрическая индукция, согласно теории Гельмгольца, или электромагнитная волна, согласно теории МаксвеллаВ 1887 г. Герц пока ничего еще не говорит об электромагнитных волнах, хотя он уже заметил, что влияние генератора на приемник особенно сильно в случае резонанса (частота колебаний генератора совпадает с собственной частотой резонатора).
Проведя многочисленные опыты при различных взаимных положениях генератора и приемника, Герц приходит к выводу о существовании электромагнитных волн, распространяющихся с конечной скоростью. Будут ли они вести себя, как светИ Герц проводит тщательную проверку этого предположения. После изучения законов отражения и преломления, после установления поляризации и измерения скорости электромагнитных волн он доказал их полную аналогию со световыми. Все это было изложено в работе О лучах электрической силы, вышедшей в декабре 1888 г. Этот год считается годом открытия электромагнитных волн и экспериментального подтверждения теории Максвелла. В 1889 г., выступая на съезде немецких естествоиспытателей, Герц говорил: Все эти опыты очень просты в принципе, тем не менее они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла. Насколько маловероятным казалось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение.
Напряженная работа Герца не прошла безнаказанно для его и без того слабого здоровья. Сначала отказали глаза, затем заболели уши, зубы и нос. Вскоре началось общее заражение крови, от которого и скончался знаменитый уже в свои 37 лет ученый Генрих Герц.
Герц завершил огромный труд, начатый Фарадеем. Если Максвелл преобразовал представления Фарадея в математические образы, то Герц превратил эти образы в видимые и слышимые электромагнитные волны, ставшие ему вечным памятником. Мы помним Г. Герца, когда слушаем радио, смотрим телевизор, когда радуемся сообщению ТАСС о новых запусках космических кораблей, с которыми поддерживается устойчивая связь с помощью радиоволн. И не случайно первыми словами, переданными русским физиком А. С. Поповым по первой беспроволочной связи, были: Генрих Герц.
Петр Капица
Опытвот учитель жизни вечный.
Гете
Академик ПЕТР ЛЕОНИДОВИЧ КАПИЦА (18941984)выдающийся советский физик, лауреат Нобелевской премии, дважды Герой Социалистического Труда, дважды лауреат Государственной премии СССР, почетный член 13 национальных и 2'международных академий наук, почетный доктор многих иностранных университетов и институтов, обладатель различных именных медалей. Он один из крупных и талантливых организаторов советской науки, первоклассный исследователь-экспериментатор, автор ряда теоретических работ и конструктор-новатор.
П. Л. Капица родился 26 июня (9 июля) 1894 г. в Кронштадте. Его отец, Леонид Петрович, был одаренным военным инженером, генералом, строителем укреплений Кронштадта; мать, Ольга Иеронимовна, была высоко образованной женщиной, отдавшей много сил литературной, педагогической н общественной деятельности.
После года учебы в гимназии Петр Капица перешел в Кронштадтское реальное училище, которое закончил с отличием. Уже в училище обнаружились его хорошие способности к физике и электротехнике. С детства он любил конструировать, проявив особое пристрастие к часам, которые после разборки и сборки порой отказывались ходить.
В 1912 г. Петр Леонидович поступает в Санкт-Петербургский политехнический институт на электромеханический факультет, выбрав профессию инженера-электрика. Но в 1914 г. вспыхнула первая мировая война, и третьекурсник Петр Капица был мобилизован в армию, где служил шофером на санитарном грузовике. Только в 1916 г. после демобилизации он смог вернуться в институт и сразу же начал работать в физической лаборатории А. Ф. Иоффе. Именно Абрам Федорович первым увидел в Капице одаренного студента и сделал все возможное для становления его как ученого. Петр Леонидович часто подчеркивал, что он ученик, прежде всего, А. Ф. Иоффе.
В 1916 г. появляется первая научная работа П. Капицы. Она была опубликована в Журнале русского физико-химического общества и содержала описание оригинального и поразительного по простоте способа получения тонких кварцевых нитей (стрела обмакивалась в расплавленный кварц, выстреливалась из лука и вытягивала кварцевую нить, которая застывала на лету и падала вместе со стрелой на подостланное бархатное полотно). Этот метод прочно вошел в практику, и Петр Леонидович любил демонстрировать его студентам на лекциях.
После окончания в 1918 г. политехнического института Капица был оставлен преподавателем физико-механического факультета и стал одним из перовых сотрудников вновь созданного в Петрограде физического института, организованного и возглавляемого А. Ф. Иоффе.
В апреле 1921 г. П. Л. Капица получил возможность выехать в Англию. Это было большой радостью для молодого ученого, тем более что в план командировки входило посещение знаменитой Кавендишской лаборатории Резерфорда. В начале июня в Лондон из Германии приехал и А. Ф. Иоффе. Капицу хочу оставить здесь на зиму у Резерфорда, если он его примет:
Красин ' дал согласие, писал Иоффе домой.
12 июля А. Ф. Иоффе и П. Л. Капица отправились в Кембридж. На другой день Иоффе писал жене: Был в Кембридже у Томсона и Резерфорда, последний пригласил меня к чаю и согласился принять в свою лабораторию
Капицу. Это было действительно так. Но прежде чем Резерфорд сказал свое да, было следующее, как говорит лабораторное предание. Со свойственной ему прямотой директор Кавендишской лаборатории заявил, что у него много иностранных стажеров и всего лишь тридцать мест для работы. Извините, но все места до одного заняты, заключил он.
А. Ф. Иоффе, как всегда вежливо что-то ответил, но тут вмешался Капица, терять-то уже все равно было нечего.
Какова точность Ваших экспериментальных работ, профессорспросил он.
Порядка пяти процентов, ответил Резерфорд.
Если к тридцати прибавить еще одного человека,заметил Капица,то этот процент окажется в пределах экспериментальной ошибки, не так ли профессорВедь за большей точностью Вы и не гонитесь. Говорили, что Резерфорд был покорен. Ладно, оставайтесь! пробурчал он и, усмехнувшись, добавил для острастки. Но если Вы вместо научной работы займетесь большевистской агитацией, я этого не потерплю!
Так Петр Леонидович остался в Кембридже. Через год он писал своей матери: Почему меня принялиЯ до сих пор этого не знаю. Я как-то об этом спросил Резерфорда. Он расхохотался и сказал: Я сам был удивлен, когда согласился Вас принять, но, во всяком случае, я очень рад, что сделал это...
Совместная работа великого Резерфорда, о котором Капица писал как о втором отце, как о выдающемся учителе и прекрасном человеке, и молодого советского физика, которого Резерфорд называл своим лучшим учеником, продолжалась с тех пор тринадцать лет, и принесла прекрасные научные результаты. Головокружительным и беспримерным был взлет молодого Капицы в стенах Кавендиша: от начинающего исследователя до директора Мондской лаборатории на берегах Кема, члена Лондонского Королевского общества.
О том, как это происходило, лучше всего рассказывают письма Петра Леонидовича, написанные без предварительного замысла, без раздумий о том, что когда-нибудь они будут важными документами к жизнеописанию великого Резерфорда и самого Капицы.
24 июля 1921 г. Перебрался из Лондона в Кембридж и начал работать в лаборатории... Ничего не задумываю, ничего не загадываю. Поживем увидим...
6 августа 1921 г. Вот уже больше двух недель я в Кембридже. Теперь настает самый рискованный момент это выбор темы для работы.
12 августа 1921 г. Вчера в первый раз имел разговор на научную тему с проф. Резерфордом. Он был очень любезен, повел к себе в комнату, показывал приборы. В этом человеке, безусловно, есть что-то обаятельное...
25/х21 г. Отношения с Резерфордом или, как я его называю, Крокодилом, улучшаются. Работаю усердно с воодушевлением.
1/Х121 г. Результаты ( которые я получил, уже дают надежду на благополучный исход моих опытов. Резерфорд доволен, как мне передавал его ассистент. Это сказывается на его отношение ко мне. Пригласил в это воскресение пить чай к себе. Он очень мил и прост. Но когда он недоволен, только держись.
22/ХП. 21 г. Сегодня, наконец, получил долгожданное отклонение в моем приборе. Крокодил был очень доволен. Если опыты удадутся, то мне удастся решить вопрос, коий не удавалось разрешить с 1911 г. ни самому Резерфорду, ни другому хорошему физику, Гейгеру... Завтра еду в Лондон, так как начинаются рождественские каникулы и лаборатория закрывается...
5/11.21 г. В прошлом триместре я работал по 14 ч в день, теперь же меня хватает всего-навсего на 810 ч.
28/111.22 г. ...Резерфорд доволен, и у нас уже идут с ним разговоры о дальнейших работах. Сегодня было очень забавно... Оказалось, что мои данные ближе согласуются с данными Гейгера, а не Резерфорда. Когда я это ему изложил, он спокойно сказал мне: Так и должно быть: работа Гейгера произведена позже, и он работал в более благоприятных условиях. Это было очень мило с его стороны...
7/1У.22 г. Работал после урочного времени по специальному разрешению Крокодила, после приходил домой и подсчитывал результаты до 45 ч ночи, чтобы на следующий день все опять начать с утра. Немного устал... За это время имел три долгие разговора с Резерфордом (по часу). Голова его, мамочка, действительно поразительная. Лишен всякого скептицизма, смел и увлекается страстно.
24/У.22 г. Опять работаю как вол, не менее 14 ч в день. Думаю написать свою работу на будущей неделе и отправить в печать. Крокодил торопит'.
15/У1.22 г. Начал новую работу с одним молодым физиком 2. Резерфорд увлечен моей идеей и думает, что мы будем иметь успех 3. У него чертовский нюх на эксперимент, и если он думает, что что-нибудь выйдет, то это очень хороший признак.
5/ХП.22 г. Я тебе уже писал, что затеял новую работу, очень смелую и рискованную. Я волновался очень. Первые опыты сорвались. Но Крокодил дает мне еще одну комнату и согласен на расходы.
17/УШ.22 г. Предварительные опыты окончились полной удачей. Резерфорд, мне передавали, только и мог говорить, что о них. Мне дано большое помещение, кроме той комнаты, в которой я работаю, и для эксперимента полного масштаба я получил разрешение на затрату довольно крупной суммы.
2/1Х.22 г. Мои опыты принимают очень широкий размах. Последний разговор с Резерфордом останется мне памятным на всю жизнь. После целого ряда комплиментов мне он сказал: Я был бы очень рад, если бы имел возможность создать для вас у себя специальную лабораторию, чтобы вы могли работать в ней со своими учениками. (У меня работают сейчас два англичанина 4.)
29/Х122 г. Для меня сегодняшний день до известной степени исторический. Вот лежит фотографияна ней только три искривленные линии. Но эти три искривленные линии полет альфа-частицы в магнитном поле страшной силы. Эти три линии стоили профессору Резерфорду 150 фунтов стерлингов, а мне и Эмилю Яновичу5 трех с половиной месяцев усиленной работы.
Крокодил очень доволен этими тремя искривленными линиями... Правда, это только начало работы.
' В 1922 г. П. Л. Капица закончил работу по исследованию закона потери энергии а-частнцей в среде.
2 Речь идет о Блэккете.
* Имеется в виду помещение камеры Вильсона в сильное магнитное поле. 4 Д. Кокрофт и В. Вебстер.
8 Лауэрман электрик и механик, с которым Капица был знаком еще в Петрограде.
27/1.23 г. В среду я был избран в университет, в пятницу был принят в колледж. Для меня были сделаны льготы, и кажется. через месяцев пять я смогу получить степень доктора философии (Все, конечно, устроил Резерфорд, доброте которого по отношению ко мне прямо нет предела.)
18/111.23 г. Я боюсь, что у тебя превратное мнение обо мне и моем положении тут. Дело в том, что мне вовсе не сладко живется на белом свете. Волнений, борьбы и работы не оберешься. Кружок, мною организованный, берет много сил '. Одно, что облегчает мою работу, это такая заботливость Крокодила, что ее можно смело сравнить с заботливостью отца.
14/1У.23 г. Главное уже сделано и дало головокружительные результаты. Масштаб работы сейчас у меня крупный, и меня пугает это. Но то, что за мной стоит Крокодил, дает мне смелость и уверенность. Ты себе не можешь представить, дорогая моя, какой это крупный и замечательный человек.
15/У1.23 г. Вчера я был посвящен в доктора философии. Мне так
дорого стоил этот чин, что я почти без штанов. Благо Резерфорд дал взаймы, и я смогу поехать отдохнуть. Тут у меня вышла следующая история. В этом году освободилась стипендия имени Максвелла. Она дается на три года лучшему из работающих в лаборатории, и получение ее считается большой честью. В понедельник, в последний день подачи прошения, меня позвал к себе Резерфорд и спросил, почему я не подаю на стипендию. Я отвечал, что то, что я получаю, уже считаю вполне достаточным и считаю, что как иностранец-гость должен быть скромным. Он сказал, что мое иностранное происхождение нисколько не мешает получению стипендии... Мой отказ его, конечно, несколько озадачил и обидел...
23/УП.23 г. Резерфорд опять предложил мне ту же стипендию. Я сдался и подал заявление.
23/У111.23 г. Я получил стипендию им. Клерка Максвелла, а с ней и много поздравлений.
30/У111.23 г. Я затеваю еще новые опыты по весьма смелой схеме2. Вчера вечером я был у Резерфорда, обсуждал часть вопросов, остался обедать, много беседовали на разные темы. Он был очень мил и заинтересовался этими опытами. Пробыл я у
него часов пять. Он дал мне свой портрет. Я его пересниму и пошлю тебе.
Для определения магнитного момента а-частицы Капице нужны были очень сильные магнитные поля. Обычно поля получали с помощью электромагнитов, и рекордом была напряженность
Дискуссионный кружок молодых физиковКлуб Капицы, куда входили Кокрофт, Олифант, Блэккет, Дирак и многие другие кембриджцы.
2 Речь идет о начале знаменитых опытов П. Л. Капицы по созданию сильных магнитных полей.
50' 103 Эо. Стремясь получить более сильное поле, французский физик Коттон построил электромагнит массой в 100 т, сумев увеличить напряженность поля всего на 25% (стоил же такой электромагнит несколько миллионов золотых франков). Таким образом, путь увеличения размеров электромагнитов для получения более сильных магнитных полей был несостоятелен. Причина его заключалась в явлении магнитного насыщения железа.
Капица пошел по другому пути. Он решил использовать соленоидкатушку без сердечника. Но, чтобы создать сильное поле внутри соленоида, по нему надо пропустить большой ток, что приводит к нагреву обмотки и ее сгоранию. Конечно, обмотку можно охлаждать, например, жидким воздухом (t= -190С), как предложил Ж. Перрен. Но, по расчетам, для получения поля в 100-103 Э на охлаждение соленоида потребовалось бы 90 т жидкого воздуха в час. Это технически было неосуществимо.
Петр Леонидович выдвигает совершенно новую, оригинальную идеюотказаться от магнитных полей, существующих длительное время, а использовать импульсные (кратковременные) поля огромной силы. Первый соленоид Капицы выдерживал мощность в несколько десятков тысяч киловатт в течение сотой доли секунды, нагреваясь при этом до
100 С. В качестве источника тока использовался аккумулятор небольшой емкости. При коротком замыкании сила тока в катушке достигала 7.103 А, что давало возможность получить поле в 100-103 Э. В дальнейшем вместо аккумулятора стал использоваться мощный генератор, построенный по проекту Капицы и М. Костенко английской фирмой Метрополитен-Виккерс. Ротор генератора имел массу 2,5 т и мог вращаться со скоростью 1500 об/мин. Генератор успешно выдержал испытания и превзошел расчетные данные. Теперь встала задача создать автоматический замыкатель и размыкатель. Эта часть оказалась очень трудной, и я сплошь проработал над ней три месяца. Она делается аэроплановой фабрикой, так как по конструкции очень похожа на клеточный распределительный механизм быстроходного аэропланового двигателя,писал Капица в июле 1925 г. М. Костенко.
С помощью этой установки П. Л. Капица получил поля напряженностью в 300-103 Э, а при продолжении этих опытов в Москве 500-103 Э, т. е. в 10 раз больше рекорда, полученного с помощью электромагнитов. Кроме того, использование кратковременных полей хотя и потребовало более быстродействующей аппаратуры, позволяло избавиться от влияния ряда мешающих явлений. Сейчас этот метод является основным в области физики элементарных' частиц, время жизни многих из которых не превышает 10-6С.
Следует отметить, что П. Капица в 1925 г. положил начало технической революции в области физики. И установка Капицы, и принцип ее действия производили сильное впечатление на ученых Кембриджа и его гостей. Вот как об этом писал Н. Винер:
В Кембридже все же была одна дорогостоящая лаборатория, оборудованная по последнему слову техники. Я имею в виду лабораторию русского физика Капицы... Капица был пионером в создании лабораторий-заводов с мощным оборудованием.
Научившись получать сильные магнитные поля, Капица приступил к исследованию в них свойств металлов. Вскоре им было открыто явление линейного возрастания сопротивления металлов с ростом напряженности поля (линейный закон Капицы). Теоретически закон был объяснен лишь в 60-е годы.
За 10 лет (19241933) Петр Леонидович опубликовал более 20 работ, связанных с исследованием металлов в сильных магнитных полях. В 1924 г. он становится помощником директора Кавендишской лаборатории по магнитным исследованиям. В 1930 и 1933 гг. Капица принимает участие вместе с большой Кавендишской группой, возглавляемой Резерфордом, в Сольве-евских конгрессах в Брюсселе. Конгресс 1930 г. был посвящен магнитным свойствам вещества. Капица и Коттон выступали с докладами. Оба доклада вызвали большой интерес.
Изучая свойства металлов в сильных магнитных полях, Капица приходит к заключению, что многие явления, в особенности гальваномагнитные, наиболее интересны при низких температурах. Чтобы их создать, надо было заняться получением газов в жидком состоянии и строить соответствующую аппаратуру.
В 1908 г. голландский физик Камерлинг-Оннес после многочисленных опытов сумел получить в жидком состоянии самый трудный в этом плане газ гелий. (За эти работы в 1913 г. Камерлинг-Оннес стал Нобелевским лауреатом.) Однако даже в 1929 г. техника получения жидкого водорода была освоена слабо. Первое, с чего я начал, писал Капица, это постройка водородного ожижителя. Первая установка Капицы давала 7 л жидкого водорода в час; пусковое время20 мин. Это было очень хорошо. Но в связи с тем, что водород взрывоопасен, Петр Леонидович решил отказаться от него и предложил новый метод получения жидкого гелия: гелий будет охлаждаться за счет совершения им работы в адиабатном процессе (тепло к системе не подводится, а работу она совершает за счет убыли своей внутренней энергии и, следовательно, охлаждается). Сначала Капица предполагал применить для этой цели турбину. Но турбина выгодна тогда, когда через нее проходит значительная масса газа. Оказалось, что производительность ее, если учесть размеры существующих турбин, должна быть несколько тысяч литров жидкого гелия в час. Чтобы получить 12 л в час, как это было необходимо для лабораторного эксперимента, турбина должна была иметь 12 см в диаметре.
Поэтому было решено использовать поршневую машину. Но здесь встала очень трудная задачанайти материал для смазки работающей при столь низких температурах (до 10 К, или 263С) машины.
Эта задача была решена гениально просто: смазкой будет служить сам газообразный гелий, так как между поршнем и стенкой цилиндра был оставлен зазор 0,035 мм. Но чтобы через этот зазор не могло уходить много гелия, когда цилиндр будет им наполнен при высоком давлении, необходимо процесс расширения производить очень быстро. Расчеты показали, что такую скорость осуществить можно. Другая трудность состояла в подборе материала: ведь при температуре жидкого гелия все материалы становятся хрупкими. Поиски нужного материала вскоре увенчались успехом: аустенитовая сталь сохраняет свою пластичность даже при самых низких температурах. В 1934 г. в Кембридже П. Капица создает свой первый ожижитель гелия поршневой детандерпроизводительностью 1,7 л жидкого гелия в час.
Завершающие работы по созданию этой установки проходили уже в новой лабораториилаборатории им. Людвига Монда, построенной по инициативе Лондонского Королевского общества специально для работ в области сильных магнитных полей и низких температур. Лаборатория торжественно была открыта в 1933 г., а Петр Леонидович Капицапомощник Резерфорда с 1924 г. по магнитным исследованиям, стал ее директором.
В конце лета 1934 г. П. Л. Капице было поручено возглавить строительство нового институтаведущего научно-исследовательского центра нашей страны, организуемого по постановлению Советского правительства. Строительство его началось в начале 1935 г. и завершилось в 1937 г. Мне кажется, что эта цель достигнута, писал Петр Леонидович, и институт можно считать не только одним из самых передовых у нас в Союзе, но и в Европе. Институт по инициативе Капицы, хотя с этим многие и не соглашались, был назван Институтом физических проблем. <Это несколько необычное название,объяснял Петр Леонидович,должно отразить собой то, что институт не будет заниматься какой-либо определенной областью знания, а будет, вообще говоря, институтом, изучающим известные научные проблемы, круг которых определится тем персоналом, теми кадрами ученых, которые в нем будут работать.
Первыми направлениями в работе института стали сильные магнитные поля и низкие температуры. Основное оборудование для экспериментов было закуплено по решению Советского правительства у Лондонского Королевского общества. (Это оборудование находилось в лаборатории Монда.) Все три года, пока институт строился, Капица вел постоянную переписку с Резерфордом. Главное в письмах Резерфорда заключалось в том, что он настоятельно советовал Капице как можно быстрее создать свою лабораторию и научить своих помощников быть полезными
Размер:126 Kb
Закачек:254
Отзывов:0
Скачать 
Мнения о реферате:
Ваше имя
Комментарий
 Рекомендую
 Нейтральный
 Не рекомендую
Самые популярные из раздела Рефераты: физика


Directrix.ru - рейтинг, каталог сайтов
В случае обнаружения ошибок на сайте или неточностей в описании, просим обращаться в . Спасибо. ICQ: 272208076